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1

             IN the past years, a considerable number of publications have 
signifi cantly furthered our understanding on the mechanisms 

regulating aging ( 1 , 2 ). Despite this important advance, the mo-
lecular determinants of aging in eukaryotes remain ill-defi ned. 
Certainly, further research is needed to identify cellular factors 
and chart their interactions in order to elucidate the pathways 
regulating aging. For this endeavor, simple model organisms 
such as nematodes, fl ies, and yeast represent powerful tools for 
the study of aging because of their convenient short life span 
and their amenability to easy genetic manipulation. Several 
large-scale genetic screens carried out with worms or yeasts 
led to the identifi cation of numerous genes involved in aging, 
which subsequently were tested in mammals ( 3 ). As a corol-
lary, the extrapolation from one eukaryotic species to another 
is for the most part possible because altogether, these studies 
demonstrated that many functions known to control longevity 
are conserved within the eukaryotic kingdom ( 4 ). 

 In unicellular fungi, the mechanisms of aging are investi-
gated by using two distinct kinds of studies. Replicative life 
span (RLS) refers to the number of daughters a single cell can 
produce before it dies, and so it is measured as a number of di-
visions or generations ( 5 , 6 ). Chronological life span (CLS) 
measures the time a population of cells survives in stationary 
phase ( 7 ). Some studies compared both types of aging in  Sac-
charomyces cerevisiae  and tried to reconcile them showing that 
replicative and chronological aging were dependent on each 
other ( 8 , 9 ). However, the effects of knocking out more than 500 
genes on both kinds of life spans suggest that replicative and 
chronological aging are controlled independently ( 10 ). 

 For both replicative and chronological aging, budding 
yeast has been a highly effective organism for the discovery 

of novel genes involved in the regulation of aging. The rele-
vance of the discoveries related to the study of aging in bud-
ding yeast to other eukaryotes has been shown numerous 
times. For example, dietary restriction increases RLS and 
CLS of  S cerevisiae  and extends longevity of metazoans as 
well ( 11 , 12 ). Importantly, the function and often the sequence 
of the proteins encoded by the genes discovered in yeast are 
frequently conserved in multicellular eukaryotes ( 3 , 13 , 14 ). 
Moreover   , in yeast, nutrient signaling pathways are con-
trolled by the serine threonine kinases Tor, Sch9, and PKA. 
These    pathways are all known to have proaging effect, and 
their homologs in animals share conserved functions in ag-
ing. For instance, loss of Tor1 kinase extends both replicative 
and chronological aging of budding yeast ( 15  –  17 ) and has 
the same effect on fl ies and worms ( 18 ). Likewise   , deletion 
of the adenylyl cyclase  CYR1 , which acts upstream of the 
PKA kinase, lengthens life span in budding yeast ( 19 ). The 
knockout of the adenylyl cyclase AC5-activating PKA in-
creases mice ’ s longevity as well ( 20 ). The    Sch9 kinase, which 
controls replicative and chronological aging in yeast ( 17 , 19 ), 
was proposed to be the ortholog of the kinase S6K1, which is 
known to be related to the control of aging in mice,  Droso-
phila , and  Caenorhabditis elegans  ( 14 , 21 ). The role of sir-
tuins in aging was fi rst discovered in  S cerevisiae , where an 
extra copy of the  SIR2  gene increases RLS ( 22 ). Later, these 
proteins have been found to belong to a highly conserved 
family of NAD + -dependent enzymes acting as regulators of 
aging in other lower organisms ( 23 ). In yeast, invertebrates, 
and mammals, they act in functions related to longevity, such 
as genomic maintenance ( 24 ), regulation of stress resistance 
( 25 , 26 ), metabolism, and glucose tolerance ( 27 , 28 ). 
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 Logically, following the fruitful use of  S cerevisiae  to in-
vestigate the mechanisms of aging, in the past years, various 
research groups turned to other yeast models. In this review, 
we elaborate on the relevance of the use of different unicel-
lular organisms to unravel the process of aging, particularly 
focusing on fi ssion yeast. Data    from other unconventional 
yeasts like  Candida albicans ,  Kluyveromyces lactis , and 
others will be also discussed. The comparison of similar 
species having different life spans can help to identify uni-
versal molecular factors acting on aging.  

 W hat  M akes   S chizosaccharomyces   pombe    an  
A ttractive  M odel   for   the  S tudy   of  A ging ? 

 For historical and cultural reasons,  S cerevisiae  is by far 
the most popular yeast used in the laboratory. The  “ other 
yeast ”  model,  Schizosaccharomyces pombe , has been devel-
oped because it brings a distinct and complementary tool to 
study the biology of the eukaryotic cell. These two yeasts are 
separated from a common ancestor by 400 million years, 
leaving each other much time to evolve separately ( 29 ). A 
separate evolution took place during this long period of time; 
it has been speculated that budding yeast could have lost 
some functions that fi ssion yeast and animals conserved from 
their common ancestor ( 30 ). Indeed, genome studies showed 
that most proteins for messenger RNA (mRNA) splicing are 
conserved between  S pombe  and metazoans but are not found 
in  S cerevisiae  ( 30 ). The same observation was done for 
other RNA-binding proteins, including those in the RNA in-
terference machinery ( 31 ), nuclear structural proteins, chro-
matin- and centromere-binding proteins ( 30 , 32 ), and some 
glycoprotein-folding proteins in the endoplasmic reticulum 
( 33 ). In    addition, the Wis4/Wis1/Sty1 stress response path-
way in fi ssion yeast is mitogen-activated protein (MAP) 
kinases dependent, similar to mammals where the stress 
response activates the MAP kinases p38 and JNK ( 34 , 35 ). 

 Mitochondrion is a central organelle in the regulation of 
aging ( 36 , 37 ). As budding yeast, fi ssion yeast is Crabtree pos-
itive, which refers to their ability to turn down respiration in 
the presence of glucose ( 38 , 39 ). However, mitochondrial ac-
tivity proved to be differently regulated in these two yeasts. 
First, mutants without mitochondrial DNA (rho 0  or  petite ) are 
more diffi cult to isolate in  S pombe . For a long time,  S pombe  
was ranged as petite negative but such mutants were fi nally 
isolated in a recent study ( 40 , 41 ). The reason for such diffi -
culty to obtain  S pombe  petite clones was probably linked to 
the very poor growth of this mutant ( 40 ). Furthermore, the 
basal level of respiration when this yeast is cultured in glucose 
is lower than in budding yeast ( 39 ). Besides, the mitochondrial 
inheritance in fi ssion yeast is mediated through the microtu-
bule network as in mammalian cells ( 42 ). Altogether, these 
observations suggest a tighter dependence of fi ssion yeast on 
mitochondrial activity, as is the case in mammalian cells. Re-
garding the multiple conservation of  S pombe  functions with 
those of multicellular organisms, this yeast represents a com-
plementary and very interesting model to study aging.   

 Table 1.        RLS of  Schizosaccharomyces pombe   

  Wild Type 
Background Mean RLS * Maximum RLS *  ,   †   N Reference  

  NCYC132 9.2 14 48 ( 45 ) 
 h  −   972 15.9 21 75 ( 46 )  

    Notes : RLS = replicative life span.  
  *       Unit: number of divisions.  
   †        Maximum RLS attained.   

 R eplicative  A ging   in  S  pombe  
 RLS is measured by micromanipulating a single mother 

cell to count the number of daughters produced before death 
( 43 ). In order to succeed in this analysis, the biologist has to 
separate the mother cell from its daughters, which implies 
that one needs to distinguish one from the other. This opera-
tion is easily carried out in  S cerevisiae , in which the divi-
sion is morphologically asymmetrical with the formation of 
a bud. It is not the case in  S pombe  because it divides by fi s-
sion, which results in the synthesis of a septum in the middle 
of the cell. This renders the identifi cation of mother and 
daughter cells more complicated. Due to this apparent sym-
metrical morphology of the two cells after division,  S pombe  
siblings were considered as sisters ( 44 ). This particularity 
of binary fi ssion makes this species a very interesting model 
to study RLS of higher eukaryotes because it represents a 
mechanism of division similar to that of mammalian cells. 

 Despite the diffi culty to isolate the mother from its daugh-
ter, Barker and Walmsley ( 45 ) succeeded to measure RLS 
of  S pombe . They observed that the fi rst, the second, and 
sometimes the third divisions of a virgin mother cell are 
morphologically symmetrical. However, the fourth and the 
next divisions are not symmetrical. Taking advantage of the 
fact that the mother cell becomes rounder and bigger while 
it replicatively ages, they could recognize it from the form-
ing daughter and measure its RLS. 

 Interestingly, the average life span of the NCYC132 
background of  S pombe  is only 9 divisions, and the maxi-
mum is attained after 14 divisions ( Table 1 ) ( 45 ). The same 
experiment was repeated later in the wild-type background 
h  −   972, which is commonly used by most laboratory today, 
and scored a mean RLS of young cell at 16.5 generations, 
with a maximum of only 21 generations ( Table 1 ) ( 46 ). In 
this work, the protocol was improved; the authors took ad-
vantage of the presence of fi ssion scar(s) on the mother to 
distinguish it from its daughter, which allowed separating 
them from the very fi rst division.     

 The equivalent analysis in budding yeast resulted in an 
average life span of more than 20 divisions for most back-
grounds ( 47 ).  Saccharomyces cerevisiae  can reach an aver-
age of 26 generations and a maximum RLS of more than 50 
in the commonly used BY4742 strain, which makes this as-
say particularly long ( 47 ). The characteristic of fi ssion yeast 
to have a shorter average and maximum RLS should greatly 
accelerate the experimentation with this species. Moreover, 
the fact that just a few different wild-type background exist 
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 YEAST MODELS OF AGING 3

and that most laboratories use the h  −   972 background will 
avoid discrepancies associated to strain-specifi c effects on 
longevity, like it happened in budding yeast ( 48 ). 

 The forming bud and the following newborn daughter of 
 S cerevisiae  contain less carbonylated proteins (characteris-
tic of old damaged proteins) than their corresponding 
mother ( 49 ). Consequently, the division is a rejuvenation 
event for the new cell. Despite the fact that mitosis in  S 
pombe  cells results in median fi ssion, differences in stress 
resistance of the siblings were already known in this spe-
cies. Later   , the same asymmetrical distribution of carbony-
lated proteins was observed in fi ssion yeast than in budding 
yeast ( 46 ). This partitioning mechanism is dependent on the 
histone deacetylase Sir2, like in  S cerevisiae . Interestingly, 
conserved functions of heterochromatin assembly and DNA 
damage response have been reported for Sir2 and its ho-
molog Hst4 in fi ssion yeast ( 50 , 51 ). The partitioning during 
cell division relies also on Tea1, a protein known to act in 
polarized growth ( 52 ). Fission yeast cell polarity has been 
intensively studied, which will be of great advantage to ex-
plore the role of microtubule-mediated division in replica-
tive aging. To date, few studies have looked for genes 
affecting RLS in fi ssion yeast, and yet this model system 
looks very promising.   

 C hronological  A ging   in  S  pombe   

 Protocols and Conditions 
 Replicative aging in yeast is considered as a model for 

actively dividing cells like germ line cells, whereas chrono-
logical aging constitutes a model for differentiated somatic 
cells ( 53 ). CLS is measured on a population of billions of 
cells by following their survival during stationary phase, a 
low metabolic state following exponential growth ( 7 ). This 
protocol was validated recently in fi ssion yeast with the 
characterization of the increased CLS in two knockouts of 
serine threonine kinases involved in nutrient sensing ( 54 ). 
Since then, several other studies of chronological aging 
have been carried out with this model. 

 The protocol to measure CLS is very similar to the one 
described previously for  S cerevisiae  ( 7 ). Basically, cells 
are grown in a given medium until saturation. When the 
maximum optical density is reached, the culture is left in the 
incubator for 1 or 2 days before the analysis in order to 
avoid late divisions. Then, samples from the liquid aging 
cultures are serially diluted and plated on rich solid medium 
to count colony-forming units. This    method was verifi ed by 
comparing results with those obtained with vital dyes like 
phloxine B and propidium iodide ( 54 , 55 ). Four    different 
types of media were used in fi ssion yeast aging assays: (a) 
synthetic medium (Edinburgh Minimal Medium, EMM, see 
( 56 )) completed with all amino acids, called synthetic dex-
trose completed or SDC ( 54 ); (b) synthetic dextrose (SD) 
medium ( 55 , 57 ); (c) rich medium based on yeast extract 

supplemented by auxotrophic compounds ( 55 , 58 ); and (d) 
minimal medium EMM alone ( 55 ). SD is a classical me-
dium used in budding yeast. It is made from yeast nitrogen 
base, but today, it is less used in  S pombe  because it impairs 
normal growth. Indeed   , in SD medium, fi ssion yeast does 
not reach the optimal optical density like in yeast extract 
(YE) or in EMM, about OD 600 nm  2 – 3 in SD ( 57 , 59 ) and 
about OD 600 nm  8 – 10 in YE or EMM ( 54 , 60 ).   

 Dietary Restriction 
 Different nutritional manipulations allowed an extension 

of life span in yeast. In  S cerevisiae , the most common in-
tervention is to grow cells in a low concentration of glucose 
during exponential phase and follow survival in stationary 
phase. It can also be achieved by replacing the growth me-
dia by water or by changing the amino acids composition 
( 7 , 14 , 61 ). In fi ssion yeast, some of these conditions ex-
tended CLS. First, this was obtained by lowering the glu-
cose in the medium from the classical 20 g/L concentration 
by a factor of 4 – 40 (0.5% – 0.05% fi nal). This intervention 
does not work in all conditions as only two types of media 
enabled such regulation of life span by glucose: yeast ex-
tract – based medium ( 58 ) and SD medium ( 55 , 57 ). Interest-
ingly, glucose restriction in synthetic minimum media like 
EMM or EMM completed with amino acids (SDC) failed to 
increase CLS ( 55 , 58 ). One proposed explanation was that 
growth in synthetic media is already a dietary restriction 
that is dominant over the effects of glucose on longevity 
( 58 ). This hypothesis is reinforced by the observation that, 
in this minimal medium, the respiration rate is upregulated 
even in high concentration of glucose, similar to what hap-
pens in rich medium with low glucose ( 62 ). Chen and Runge 
( 55 ) even showed that overnutrition of glucose in EMM 
could slightly enhance life span. In this case, a larger avail-
ability of energy appears to be helpful and can favor the 
maintenance functions to increase CLS because dietary re-
striction is attained independently of glucose. Alternatively, 
the glucose signaling pathway may be altered in EMM me-
dium, consistent with our results that mutants of this path-
way live longer despite growing in high levels of glucose. 

 In budding yeast, synthetic media supplemented with se-
lected nutrients also lengthen CLS compared with rich me-
dia based on yeast extract ( 7 ). The use of different media 
per se increases life span in fi ssion yeast as well, through a 
mechanism probably linked to dietary restriction. In fact, 
growth in EMM minimum medium precedes a very long 
survival in stationary phase compared with that in rich YE 
medium or in SD, which both induce short life span 
( 55 , 57 , 58 ). Interestingly, completing the EMM synthetic 
minimum medium with all amino acids in a medium called 
SDC decreased CLS without changing the concentration of 
glucose ( 54 , 57 ). This    result suggests that exogenous amino 
acids induce proaging signals, like noticed in  S cerevisiae  
with the Tor-dependent signal turned on after amino acids 
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addition ( 15 ). Another possibility to explain the divergences 
in survival of a strain grown in different media comes from 
recent observations made in budding yeast showing that the 
metabolic intermediates ethanol and acetic acid determine 
chronological longevity ( 12 , 63 ). We can speculate that dif-
ferences in metabolic state of fi ssion yeast dictated by the 
nutritional environment could infl uence the production of 
these metabolites and consequently the CLS. To date, no 
study has reported an effect of ethanol and acetic acid on 
life span of  S pombe . 

 Another protocol used in budding yeast to study dietary 
restriction is  “ extreme calorie restriction, ”  and it consists in 
isolating cells that have entered stationary phase from their 
medium, wash them and let them age in sterile water, in the 
absence of any nutrient ( 7 , 12 ). This condition has been re-
produced in  S pombe  in the SD medium and also increased 
strongly CLS ( 64 ). Finally, growing fi ssion yeast in glycerol 
3% as sole carbon source in SDC medium increased consid-
erably CLS, up to sevenfold the life span of the same wild-
type strain in glucose 2% ( 58 ). To date, this condition is 
reportedly the most effi cient to extend longevity in this or-
ganism. This strong life-span extension with glycerol could 
be the consequence of a compilation of different effects: 
lack of glucose signaling and increased respiration ( 58 ), in-
creased osmolarity ( 65 , 66 ), and chemical chaperone protec-
tion ( 67 ).   

 Nutrient Signalings 
 Nutrient signaling via the kinases Sch9/Tor/PKA has 

strong proaging effects in  S cerevisiae , and downregula -
tion of these pathways is partially responsible for dietary 
restriction – dependent CLS increase ( 14 , 16 , 68 ). Our labora-
tory fi rst focused on similar pathways in fi ssion yeast. We 
found that two homologs of these kinases display similar 
proaging activity in  S pombe , Pka1 and Sck2 ( 54 ). Other 
studies confi rmed our results thereafter ( 55 , 57 ). The fi rst 
gene,  pka1 +  , codes for the active subunit of the PKA com-
plex, which is regulated by the Cgs1 subunit, as represented 
in  Figure 1  ( 69 , 70 ). Contrary to its budding yeast counter-
part, the activity of Pka1 is carried out by a single protein 
and is not essential. The    effect of the PKA active subunits 
on longevity has not been reported in budding yeast because 
the triple knockout of the three orthologs with redundant 
PKA activity ( TPK1-3 ) is lethal. Indirect involvement of 
PKA activity in aging was determined by deletion of the 
regulatory subunit  BCY1 , of the adenylyl cyclase  CYR1  or 
using G protein  RAS2  mutants, and led to contradictory 
results ( 71 ). In  S pombe , we took advantage that the knock-
out of Pka1 is viable to show the direct link between aging 
and this serine threonine kinase ( 54 ). Upstream from PKA, 
the membrane glucose receptor Git3 induces proaging ef-
fects through the G a  protein Gpa2, which signals the pres-
ence of glucose to Pka1 via cyclic adenosine monophosphate 
(cAMP) produced by the adenylyl cyclase Git2 ( Figure 1 ) 

( 58 , 72 ). The Git3/PKA pathway is responsible for the 
downregulation of stress resistance and mitochondrial ac-
tivities, possibly causing premature aging by promoting the 
accumulation of reactive oxygen species (ROS;  Figure 1 ) 
( 54 , 58 ). The genes responsible for longevity regulation in 
fi ssion yeast are summarized in  Table 2 .         

 The    Sch9 serine threonine kinase is the gene that has the 
strongest proaging effect in  S cerevisiae . Two homologs exist 
in fi ssion yeast: Sck1 and Sck2, which stand for  S uppressor of 
loss of  c AMP-dependent protein  k inase ( 74 , 75 ). The deletion 

 Table 2.        Genes    Involved in Chronological Longevity Extension in 
Fission Yeast  

  Gene Function Manipulation * Medium Used Reference  

   pka1 Ser/Thr kinase  D SDC, SD ( 54 , 57 ) 
  git3 Ser/Thr kinase  D YEC ( 58 ) 
  sck2 Ser/Thr kinase  D SDC, SD ( 54 , 55 , 57 ) 
  icl2 Fatty acyl-CoA 

 synthetase
 D SD ( 73 ) 

  ecl1/2/3 Unknown oe SD/EMM/H 2 O ( 57 , 64 )  

    Notes : EMM = Edinburgh Minimal Medium; SD = synthetic dextrose; 
SDC = synthetic dextrose completed; YEC = yeast extract completed.  

  *        D  refers to the deletion of the corresponding gene; oe refers to its overex-
pression on plasmid.   

  

 Figure 1.        The Git3/Pka1 pathway in  Schizosaccharomyces pombe  shortens 
life span. The Git3 membrane receptor is activated by glucose and transduces a 
signal to the Gpa2 G a  protein, which in turn activates the adenylyl cyclase Git2/
Cyr1. The production of cAMP induces the release of the Pka1 kinase from the 
Cgs1 regulatory subunit and its translocation to the nucleus. This correlates with 
decreased stress resistance, mitochondrial respiration, and shortened chrono-
logical life span. The Sck2 kinase has a similar effect on aging but the underly-
ing mechanism is unknown. ROS = reactive oxygen species   .    
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 YEAST MODELS OF AGING 5

 Stress Response Pathway 
 The stress-activated protein kinase (SAPK) pathway is 

governed by the Wis4/Wis1/Sty1 MAP kinase cascade acti-
vated through many external stimuli, like nutrients, osmotic 
stress, thermal stress, and oxidative stress ( 35 , 76 ). Interest-
ingly, the downstream transcription factor Atf1 is required for 
long-term survival as well as the Sty1 MAP kinase ( 57 , 77 ). 
Sty1 is responsible for the expression of many stress response 
proteins, including ROS scavengers, heat shock proteins, and 
osmotic response proteins ( 35 ). Interestingly, the rapid death 
following the loss of Sty1 is rescued by overexpression of 
 ecl1 +  , although this overexpression failed to further increase 
life span of  D  pka1  ( 57 ). Moreover, a link between the Pka1 
serine threonine kinase and Wis1/Sty1/Atf1 has already been 
proposed ( 54 , 78 ). Similarly, the Tor1 serine threonine activity 
has been shown to regulate Sty1 phosphorylation through 
Pyp2 phosphatase ( 79 ). Altogether, these results suggest that 
downregulation of the SAPK pathway could be involved in 
the proaging function of the Git3/PKA pathway.   

 Other Genes 
 A family of very small proteins called Ecl ( e xtender 

of  c hronological  l ife span) has been described as positive 
regulators of chronological longevity ( 64 , 80 ). Combined to 
Pka1 deletion, the overexpression of  ecl1 +   does not increase 
further the CLS, although in a wild-type background, it ac-
tivates the expression of  ste11 +  , a target negatively regu-
lated by Pka1 ( 64 ). These fi ndings argue for a negative 
regulation of Ecl1 by Pka1 ( Figure 2 ). Finally, the loss of 
the acyl-CoA synthetase Icf2 lengthens CLS in cells grown 
in SD medium, whereas the loss of its homolog Icf1 induces 
the rapid death in stationary phase ( 73 , 81 ). Interestingly, the 
deletion of  icf2 +   did not increase further the life-span exten-
sion obtained by glucose reduction, suggesting a role for 
long-chain fatty acyl synthesis in calorie restriction ( 73 ). 
The essential role of lipid metabolism in longevity has been 
depicted in other eukaryotic organisms and was particularly 
analyzed in budding yeast and invertebrates ( 82 ).    

 O ther  E mergent  Y east  M odels   to  S tudy  A ging  
 Apart from  S pombe , other yeast models for eukaryotic 

aging have been developed in the past few years. Fu and 
colleagues focused on the replicative aging of  C albicans . 
They took advantage of the fact that this species has two 
distinct morphological states: a yeast-like form called 
blastopore and a fi lamentous form called hyphae. The pas-
sage from one to the other depends on nutrient composi-
tion, pH, or temperature. They showed that both forms 
have similar RLS (about 20 generations) ( 83 ). They took 
advantage of the fact that the hyphae mother cell gives rise 
to smaller blastopore daughters that can be sorted out by 
centrifugation on a sucrose gradient. This way, they easily 
isolated replicatively old mother cells. Finally, they showed 
that the RLS was not determined by extra chromosomal 

  

 Figure 2.        Model for the mechanisms responsible for aging regulation down-
stream of kinases Pka1/Sck2/Tor.    

of  sck2 +  , but not  sck1 +  , was shown to increase signifi cantly 
CLS of  S pombe . Interestingly, this life-span extension is not 
followed by a gain of stress resistance in stationary phase like 
in  D  pka1 , which may explain why the effects of these two 
deletions are additive ( 54 ). In  S cerevisiae , Sch9, the Sck2 
homolog, is a major target of Tor1, and both these kinases are 
important regulators of longevity ( 14 , 21 ). Moreover, Tor1 
kinase inhibits respiration and mitochondrial translation, in-
cluding the synthesis of numerous proteins involved in respi-
ratory chain complexes ( 16 ). Interestingly, deletion of  TOR1  
enhances life span independently of mitochondrial ROS-de-
toxifying enzyme Sod2. However, this is accompanied by 
decreased ROS production. The authors proposed that sus-
tained renewal of oxidative phosphorylation chain compo-
nents could ameliorate electron transfer during mitochondrial 
respiration, thus lowering ROS production. In    a microarray 
study, we found that knocking out  sck2 +   gene increased the 
quantity of mitochondrial-encoded mRNAs in stationary 
phase compared with wild type (unpublished data, 2009). 
This suggests that Sck2, like Sch9 in budding yeast, is regu-
lated by TOR complex and could act on mitochondria instead 
of decreasing stress resistance ( Figure 2 ) ( 54 ).     

 Sck1, the other homolog of Sch9, was fi rst described not 
to be responsible for aging effects ( 54 ). However, another 
study revealed a late and slight proaging effect after 12 days 
in stationary phase; at earlier time points, the wild-type and 
the  D  sck1  curves are indistinguishable ( 55 ). At this point, 
only 0.01% – 0.001% of the cells are still alive, so Sck1 has a 
minor effect on longevity compared with its homolog Sck2.   
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circles in this organism, like in budding yeast, but was nev-
ertheless dependent on  SIR2  gene dosage. This study pro-
poses a new model for aging with unique features greatly 
facilitating the large-scale screens for genes involved in 
replicative aging. This represents a signifi cant advance as 
this protocol is hardly achievable in budding and fi ssion 
yeasts, which require micromanipulation to isolate mother 
from daughter cells. 

  Kluyveromyces lactis  is a Crabtree-negative yeast for 
which glucose limitation does not promote an enhancement 
of the respiratory capacity ( 84 ). Recently, a study compared 
the effect of dietary restriction by glucose reduction in  S 
cerevisiae  and  K lactis  ( 80 ). Surprisingly, the CLS of  K lac-
tis  is not sensitive to glucose concentration like in  S cerevi-
siae  and  S pombe  ( 55 , 57 , 58 , 80 ). This feature coincides with 
the lack of respiration regulation by glucose, unchanging 
cytochrome content, and NADH-cytochrome c reductase 
activity, functions that are enhanced in low concentration of 
glucose in  S cerevisiae  ( 80 ). These results suggest that calo-
rie restriction – dependent increase in longevity may be due 
to mitochondrial control and more particularly the regula-
tion of oxidative phosphorylation activity. 

  Cryptococcus neoformans  is an encapsulated yeast causing 
fungal meningoencephalitis in patients with advanced HIV 
infection and in some cases in immunocompetent hosts ( 85 ). 
In a recent study, Jain and colleagues ( 86 ) analyzed replica-
tively old  C neoformans  that they referred as  “ senescent ”  cells. 
Older cells lose replicative capacity but unexpectedly dis-
played better survival to the antifungal agents and no signifi -
cant differences in virulence in mice. The authors showed that 
this yeast can undergo at least 31 generations before it dies 
and maybe more generations during infection.  Cryptococcus 
neoformans  is a promising model in part due to the data al-
ready accumulated on the signaling pathways in this species 
( 87 ). For instance, the homologs of the Sch9 and Pka1 kinases 
have been studied to investigate their effect on the virulence of 
this pathogenic yeast in mice ( 87 , 88 ). The Sch9 homolog con-
trols resistance to thermal stress. It would be interesting to 
examine if Sch9 and Pka1 homologs are also involved in rep-
licative and chronological aging like in other yeasts. 

 Today, comparative studies using different mammalian 
models like the mole rat versus mice are in progress and prom-
ise novel insights into the mechanisms of aging ( 89 , 90 ). How-
ever, many yeast species are routinely grown in laboratories. 
The few already characterized for their longevity displayed 
differences in longevity as, for example,  S pombe  has shorter 
CLS and RLS than  S cerevisiae . New yeast models could be 
quickly used for such comparative approaches that might 
bring new insights into the biology of aging. Furthermore, life 
span can be rapidly scored in these organisms, but it takes 
decades with long-lived mammals. For example, using yeast 
in comparative studies of aging, it would be easy to test the 
disposable theory of aging in comparing the relation between 
the rate of growth and longevity ( 91 ). Similarly, it would not 
require much effort to test the oxidative stress theory of aging 

on different yeast models or to study protein damage to obtain 
insights into the  “ proteotoxicity ”  hypothesis of aging ( 92 ).   
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